The appearance of the product is subject to actual product, Sentinel® has all right of the technical changes. The copyright belongs to Tranjin Sentinel Electronics Co.,Ltd., copyring must be investigated. Part.NO.:DS0001-0005/V1.0 07/2024

> POST CODE: 300384 LIS68958-ZZ-98: XE-I Tel: 86-22-85689572 83726972 E-mail: sales@sentinel-china.com

Huayuan industrial park, Tianjin China Address : Hitech green industry base,

TIANJIN SENTINEL ELECTRONICS CO.,LTD.

Electronic Temperature Sensor and Temperature Probe

Operating Instructions

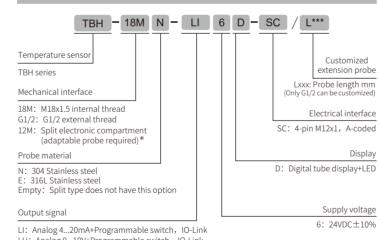
TIANJIN SENTINEL ELECTRONICS CO.,LTD.

www.sentinel-china.com/

Thank you for choosing the Sentinel TBH Series Programmable Display Integrated Temperature Sensor. This manual mainly describes the specifications, features, usage, and accessories of the temperature sensor. Please read this manual carefully before using the product. Our company reserves the right to continuously improve the product. For the latest version of the documentation, please refer to the Sentinel company website (www.sentinel-china.com), as updates will not be separately

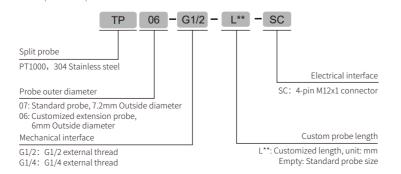
1 Safety Instructions

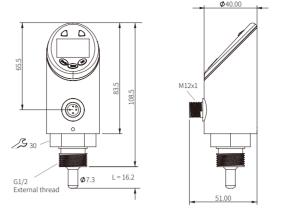
- Please read and follow these safety precautions before installing, operating, and maintaining the product.
- \blacksquare To ensure personal and equipment safety, please follow the operating instructions or technical documentation to ensure that the product is suitable for your application range and is not subject to any limitations.
- This product should be used in an environment that meets the design specifications. Failure to do so may result in malfunctions, and any issues arising from non-compliance are not covered by the warranty.
- We are not liable for any personal injury or property damage caused by improper operation. Warranty claims will be void if the equipment is improperly installed or used.


2 Product Overview

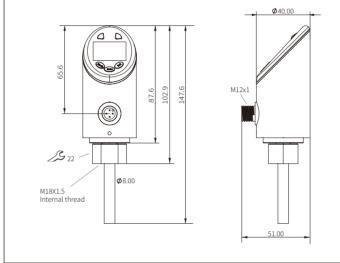
The temperature sensor monitors system temperatures in machines and equipment. Sentinel's temperature sensors feature a compact design, stainless steel construction, and built-in IO-Link communication. The integrated and separate series cater to different temperature ranges, environmental conditions, and installation depths.

3 Features and Functions

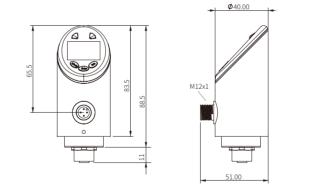

- IO-I ink function
- 4-digit large digital tube display, Mirroring, semi-transparent design
- Upper part of the housing can be rotated 300° (G1/2 only)
- NO/NC, PNP/NPN/push-pull, hysteresis/window configurable
- Switching signal/analog signal configurable, Switching signal/IO-Link configurable
- Sensor parameters can be set via buttons and IO-Link
- The start and end point of the analog signal can be set
- Standard 4-pin A-code M12 interface
- Simple key operation, with key lock function
- The display panel adopts an integrated molded housing
- The housing body is made of stainless steel

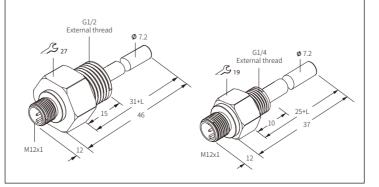

LU: Analog 0...10V+Programmable switch, IO-Link DPN: 2-way programmable switch, IO-Link

*Note: When measuring liquid temperature greater than 100°C, please use the split type (12M), separate the probe from the sensor, place the sensor at room temperature, and insert the probe into the high-temperature pipe. This split type model represents the temperature sensor, and a sep-



5 Dimensions Unit: mm


5.1 G1/2 External thread


5.2 M18 Internal thread

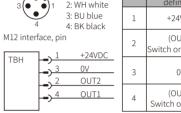
5.3 Split electronic compartment

5.4 Probe

Note: Lin this drawing size is the default length

6 Installation Instructions

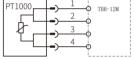
Before installing or dismantling the equipment, ensure that there is no leakage at the process


Use an appropriate adapter to screw into the process connection. The adapter must be ordered separately as an accessory.

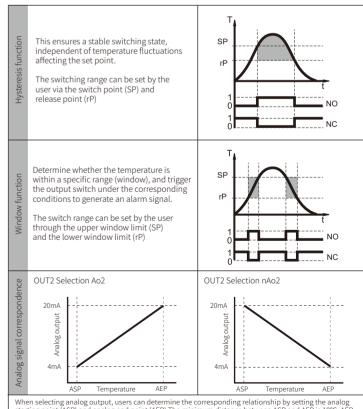
Place the sensor onto the adapter and tighten the nut with a maximum torque of 50 Nm. Ensure that the probe is inserted into the pipeline to a depth of at least 12 mm.

7 Wiring Diagram

7.1 Sensor wiring instructions

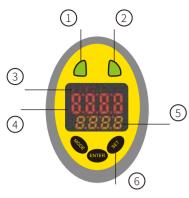


1. BN brown


n e	Pin	LI Output definition	LU Output definition	DPN Output definition
	1	+24VDC	+24VDC	+24VDC
_	2	(OUT2) Switch or 420mA	(OUT2) Switch or 010V	(OUT2) Switch
_	3	0V	0V	0V
	4	(OUT1) Switch or IO-Link	(OUT1) Switch or IO-Link	(OUT1) Switch or IO-Link

7.2 Probe wiring instructions

8 Description of Switching Signal Data and Analog Signal Data Output



When selecting analog output, users can determine the corresponding relationship by setting the analog starting point (ASP) and analog end point (AEP) The minimum distance between ASP and AEP is 10°C; AEP should be larger than ASP;
Note: 1, When setting SP, it must be greater than rP. You can set the SP value first and then rP.

If the set SP is less than rP, rP will drop to the maximum value allowed.

2, When setting AEP, it must be greater than ASP. You can set AEP first and then ASP. If the set AEP is less than ASP, ASP will drop to the maximum value allowed.

9 Display and Operation Panel

Enlarged view of unit display area

	Definition	Status Indication			
1	Output Status Indicator Light OUT1	Green	On: The corresponding switch pin is turned on for output		
2	Output Status Indicator Light OUT2	Green	Off: The corresponding switch pin turns off the output Note: This LED indicates the output status and is not an alarm light.		
3	Unit display area PWR	Red	Steady on: Power supply is normal Off: Power supply is abnormal Flashing: IO-Link communication is normal		
3	Unit display area°C °F	Red	On: represents the unit of the current digital tube display data Off: Not the current unit		
4	Data display area (large digital tube)	Red	Display sensor measurement data Display "" means the data is invalid		
5	Status display area (small digital tube)	Orange	The error code Err is displayed, indicating sensor abnormality or data abnormality The display Loc means the key lock is on		
6	Setting button				

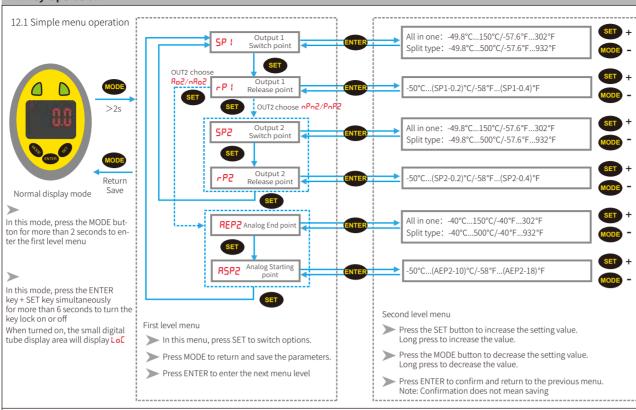
Note: The display area adopts a semi-transparent design. It can be seen when the LED is on, but not when it is off;

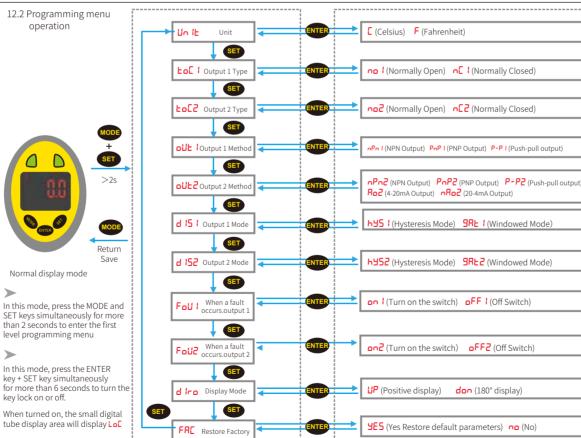
10 IO-Link Process Data Mapping

BYTE	BYTE0								
BIT	15	14	13	12	11	10	9	8	
DATA	Tbit13	Tbit12	Tbit11	Tbit10	Tbit9	Tbit8	Tbit7	Tbit6	
BYTE		BYTE1							
BIT	7 6 5		5	4	3	2	1	0	
DATA	Tbit5	Tbit4	Tbit3	Tbit2	Tbit1	Tbit0	OUT2	OUT1	

Note 1: Thit represents 14-bit temperature data. The temperature data is a signed number in "C. The integrated sensor range is -500 to 1500 (the split sensor range is -500 to 5000), which means the actual temperature is magnified 10 times. OUT1 and OUT2 represent the outrust status: Use the fields this first instruction to memow QUT1 and OUT2 to obtain 14-bit temperature is the temperature.

Note 2: When the temperature data is invalid, the data is -4096.


11 FAC Default Parameter


Parameter List	SP (cP (SP2	-P2	REP2	RSP2	Un Ib	EoE !	F0[5
FAC Default Value	60°C	50°C	60°C	50°C	100°C	0°C	°C	no1	no2
Parameter List	oUE (0UE2	8 (5)	8 152	FoU I	FoUZ	d ino	Loc	
FAC Default	PnP1	PnP2	hvS1	hvS2	oFF1	oFF2 *	UP	0:unlock	

* When [ຜປະຊ] selects analog signal output, In case of an internal fault, The output signal will run according to the parameter settings in [Fບປຊ]

	F6U2=0N	FoU2=OFF		
[out2] =Ro2	20mA	4mA		
[oUE2] =n8o2	4mA	20mA		

12 Key Operation

First level menu

parameters.

In this menu, press SET to switch options.

Press ENTER to enter the next menu level.

Press MODE to return and save the

Note: After entering the simple or programming menu, if there is no key operation within 3.5 minutes, it will automatically return to the normal display modewithout changing the setting parameters; For the switch output mode, NPN controls the 0V switch, providing a low level without a high level; PNP controls the 24V switch, providing a high level without a low level; P-P push-pull is a combination of NPN and PNP;

Second level menu

In this menu, press SET or MODE to switch options.

> Press ENTER to confirm the option and return to the previous level.

13 IO-Link Parameter

13.1 Parameter data / Request data /Indexing Service(ISDU indexed service data unit)

Index	Subindex	Parameter name	length	Permissions	Describe
0x02 2	0	System Commands	1Byte	Write	0x80 128 Reset device 0x82 130 Restore factory settings
0x10 16	0	Manufacturer's name	8Byte	Read	Sentinel
0x11 17	0	Manufacturer Description	41Byte	Read	Sentinel Industrial Ethernet manufacturer
0x12 18	0	Product name	14Byte	Read	TBH-xxx-xxx-SC
0x13 19	0	Product ID	8Byte	Read	19841701
0x14 20	0	Product Description	26Byte	Read	Temperature sensor io-link
0x15 21	0	Serial-Number	10Byte	Read	1984170101
0x16 22	0	Hardware version	8Byte	Read	HW-V0.01
0x17 23	0	Software version	8Byte	Read	FW-V0.01
0x18 24	0	Apply Tags	maximum 32Byte	Read Write	ApplicationSpecificTag is used to mark the device in the application This item is defined in the IODD file, Included in the DataStorage (DS)
0x19 25	0	Function Label	maximum 32Byte	Read Write	FunctionTag is a special tag for device functions, including This item is not defined in the IODD file, It can be set directly through Index.
0x1A 26	0	Local Tags	maximum 32Byte	Read Write	LocationTag is a special tag used for local devices, including DS This item is not defined in the IODD file, It can be set directly through Index.
0x24 36	0	Device status	1Byte	Read	0:The equipment is operating normally; 1:Need to maintain; 2:Running incorrect environment or parameters; 3:Device abeyance; 4:Device failed to run;

Index	Subindex	Parameter name	Length	Permissions	Ranges
0x1F4 500	0	Unit	1Byte	Read Write	0: °C Celsius 1: °F Fahrenheit
0x1F5 501	0	toC1 Output 1 Type	1Byte	Read Write	0: NO Normally open 1: NC Normally Closed
0x1F6 502	0	toC2 Output 2 Type	1Byte	Read Write	0: NO Normally open 1: NC Normally Closed
0x1F7 503	0	oUt1 Output 1 method	1Byte	Read Write	0: NPN output 1: PNP output 2: P-P push-pull output
0x1F8 504	0	oUt2 Output 2 method	1Byte	Read Write	0: NPN output 1:PNP output 2:P-P push-pull output 3:Ao(4-20mA) 4:nAo(20-4mA)
0x1F9 505	0	diS1 Output 1 Mode	1Byte	Read Write	0: hyS hysteresis mode 1: gAt window mode
0x1FA 506	0	diS2 Output 2 Mode	1Byte	Read Write	0: hyS hysteresis mode 1: gAt window mode
0x1FB 507	0	diro Display Mode	1Byte	Read Write	0: UP positive display 1: don 180°display
0x1FC 508	0	Lock Key lock	1Byte	Read Write	0: Unlocked 1: Key locked
0x1FD 509	0	When FoU1 fails, output mode 1	1Byte	Read Write	0: oFF1(Off switch) 1: on1(Turn on the switch)
0x1FE 510	0	When FoU2 fails, output mode 2	1Byte	Read Write	0: oFF2((Off switch) 1: on2((Turn on the switch)
0x258 600	0	SP1 Output 1 Switch point	2Byte	Read Write	All in one: 498 to 1500 Note: Unit "C SP1 should be greater than rP1 otherwise it will be rejected Split type: 498 to 5000 Note: Unit "C SP1 should be greater than rP1 otherwise it will be rejected
0x259 601	0	rP1 Output 1Release point	2Byte	Read Write	All in one: -500 to 1498 Note: Unit "C rP1 should be less than SP1 otherwise it will be rejected Split type: -500 to 4998 Note: Unit "C rP1 should be less than SP1 otherwise it will be rejected
0x25A 602	0	SP2 Output 2 Switch point	2Byte	Read Write	All in one: -498 to 1500 Note: Unit "C SP2 should be greater than rP2 otherwise it will be rejected Split type: -498 to 5000 Split type: -498 to 5000 Note: Unit "C SP2 should be greater than rP2 otherwise it will be rejected
0x25B 603	0	rP2 Output 2 Release point	2Byte	Read Write	All in one: -500 to 1498 Note: Unit "C P2 should be less than SP2 otherwise it will be rejected Split type: -500 to 4998 Note: Unit "C P2 should be less than SP2 otherwise it will be rejected
0x25C 604	0	ASP2 Analog Starting point	2Byte	Read Write	All in one:500 to 1400 Split type:500 to 4900 Split type: . Note: Unit "C ASP2 should be smaller than AEP2 otherwise it will be rejected.
0x25D 605	0	AEP2 Analog End point	2Byte	Read Write	All in one: -400 to 1500 Note: Unit *C AEP2 should be greater than ASP2 otherwise it will be rejected Split type: -400 to 5000 Note: Unit *C AEP2 should be greater than ASP2 otherwise it will be rejected

13.2 Error code

 $32785 / 0x8011 \colon Invalid \ index \\ 32786 / 0x8012 \colon Invalid \ subindex \\ 32820 / 0x8034 \colon The length \ of the \ written \ parameter \ exceeds \ the \ defined \ length \\ 32820 / 0x8034 \colon The \ length \ of the \ written \ parameter \ is \ less \ than \ the \ defined \ length \\ 32820 / 0x8034 \colon The \ length \ of the \ written \ parameter \ is \ less \ than \ the \ defined \ length \\ 32820 / 0x8034 \colon The \ length \ of \ the \ written \ parameter \ is \ less \ than \ the \ defined \ length \\ 32820 / 0x8034 \colon The \ length \ of \ the \ written \ parameter \ is \ less \ than \ the \ defined \ length \\ 32820 / 0x8034 \colon The \ length \ of \ the \ written \ parameter \ is \ less \ than \ the \ defined \ length \\ 32820 / 0x8034 \colon The \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ of \ written \ parameter \ is \ length \ of \ the \ written \ parameter \ of \ written \ of \ of \ written \ of \ written \ of \ written \ of \ written \ of \ of \ written \ o$

 $32816\,/\,0x8030$: The written parameter exceeds the settable range

13.3 General information

The sensor has an IO-Link communication interface and requires a module with IO-Link function (IO-Link master) to operate. For more detailed information about IO-Link, please visit the company website.